什么是有理数?
有理数可分为整数和分数也可分为正有理数,0,负有理数.除了无限不循环小数以外的实数统称有理数.英文:rational number读音:yǒu lǐ shù整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式.任何一个有理数都可以在数轴上表示.其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数.这一定义在数的十进制和其他进位制(如二进制)下都适用.数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数.希腊文称为 λογο,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”.无限不循环小数称之为无理数(例如:圆周率π)有理数和无理数统称为实数.所有有理数的集合表示为Q.
有理数和无理数的区别
有理数和无理数的区别为:小数形式不同,整数之比不同,位数不同等。
1、小数形式不同
把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数。
比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数,比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数。
2、整数之比不同
所有的有理数都可以写成两个整数之比;而无理数不能。
根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。
3、位数不同
有理数的位数是有限的,二无理数的位数是无限的。