反导数与不定积分的区别在哪?
不定积分代表C,反函数代表F。反函数是原函数关于直线y=x的对称图像,而不定积分是函数在某不定区间上围成的面积,定积分就是确定了还积分区间,所以不定积分当然不能叫反函数。在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f,不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分。
反导数公式
反函数的导数是原函数导数的倒数。求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
责任编辑:579
热点新闻